
 Page 1/8

Advantages and Pitfalls of Moving from an 8 bit System to 32 bit
Architectures.

David Kerr-Munslow[1].
1: Cortus S.A., Le Génésis, 97 rue de Freyr, 34000 Montpellier, France

Abstract:

This paper explores the considerations of designers
of embedded systems when they come to choosing
the bit width of the embedded CPU architecture,
especially in the domain of System on Chip designs.
Two typical architectures are compared and
contrasted, one 8 bit and the other 32 bits, the 8051
and the Cortus APS3.

Embedded systems are a designed with a number of
constraints not found in other computer systems. In
addition they are also expected to give real-time
responses, often with limited resources.

Received ideas are explored and evaluated in the
light of benchmarks and concrete examples.
Attention is paid to modern implementation and
programming methodologies.

Issues such as power consumption, code density,
suitability for real time systems, ease of software
development are discussed.

Keywords: CPU Architecture, bus width, SoC,
microcontroller, processor, CPU

1. Introduction
In this paper we explore the challenges and
misconceptions involved in processor architecture
selection for embedded systems. We concentrate on
the design choices currently in front of system
designers. The key choice is frequently the bus width
of the architecture. There are a number of
advantages and a few pitfalls associated with
choosing a 32 bit architecture over an 8 bit CPU.
Two representative processors were chosen, the
8051 which remains a very popular microcontroller
architecture, and is popular in SoC designs and the
Cortus APS3 which is a member of a new generation
of 32 bit processor architectures. The APS3 is
particularly appropriate as it was specifically
designed to correspond to the needs of embedded
systems being designed at the moment.

We explore the implications of bus width notably:
• Ease of Programming
• Code Density
• Performance
• Real Time Considerations
• Core Size
• Power Consumption
• Porting

These analyses and measurements lead to the
conclusion that questions the assumption that there
is still a niche for the 8-bit microprocessor core. This
is especially evident in the SoC arena, but also for
the microcontroller and FPGA sectors.

2. Ease of Programming
The most significant development cost of most
systems nowadays is that of software development
[3]. Therefore it is necessary to pay attention to the
implications of the architecture choice on software
development costs.
Most program development nowadays is done in
high level languages, and currently in the embedded
world that generally means C and sometimes C++.
Most young engineers have graduated with
experience of C and C++ from their University
courses, with perhaps only a minimal exposure to
some assembly language programming. Increasingly
the knowledge and practice of low level interaction
with hardware and assembly language programming
is becoming a specialised skill.

Features of C

The C programming language was initially conceived
for developing system software, for mini computers
[4]. There are certain assumptions made about the
underlying hardware by the C language. These are:

• Byte addressable memory
• Integers and pointers of the same size
• Single address space
• Stack and heap

C/C++ compilers are available for the vast majority
of processors, though sometimes not without
concession to certain architectural features.

 Page 2/8

Impact of Architecture

The architecture assumptions implicit in the C
language have an impact upon the ease of
implementation for a specific architecture.

Most implementations of the C language rely on the
presence of a stack, and use this stack not only for
parameter passing and return address storage, but
also for automatic variables. This use of the stack
gives lexical scope to automatic variables, at least
implicitly.
Processors that have a limited stack space must
implement another mechanism for the short term
storage of local variables. For instance the internal
stack of the 8051 is 128 bytes, and is used for
subroutine and interrupt returns. Stack overflow is
unsignalled and can result in hard to reproduce
crashes when nested interrupts exceed the stack
depth, this is something to which the author can
attest!
The popular C compiler for the 8051, SDCC, stores
local variables in general RAM, and lexical scope
collisions become an issue. This makes re-entrant
functions difficult to implement, and the use of library
functions within an interrupt handler potentially
treacherous. Recursion is clearly not possible.

Pointer arithmetic

The assumption that memory is a linear array of
storage cells, permits, and even encourages, the
manipulation of data structures using explicit pointer
arithmetic. In embedded systems where speed is
more prized over elegance this is even more the
case. This is exacerbated by the treatment of arrays
and pointers as aspects of the same language
feature by C.
In 8 bit CPUs the addresses are often 16 bit values,
however the natural integer size is 8 bits. This issue
is often palliated by special index registers and
addressing modes in the CPU. However it is difficult
for a compiler to take full advantage of these
resources.

Address Space

The size of the address space is a critical issue.
Most 8 bit CPUs can directly access 64Kbytes of
address space. Modern embedded systems often
have easily over 64 Kbytes of program code, and
require complex bank switching schemes. This
makes interrupts and subroutine access complex,
and potentially error prone. Convoluted schemes
must be created to ensure that library routines are
always available in the address space.

Figure 1: 8051 Address Spaces

Figure 1 shows the various address spaces of the
8051, certain spaces are only accessible either by
direct addressing modes, or by indirect addressing
modes [2, 1-6]. This aspect of many 8 bit CPUs with
multiple address spaces, for program, for data, for
I/O requiring different access techniques, frequently
requires an extension of the C language is to
manipulate data in these spaces.
Here there is a clear advantage of 32 bit
architectures which naturally address 4 Gbytes.

3. Code Density
Code density is the measure of how much memory
is required to store the program to perform a task.

Importance of Code Density

Code density influences the following factors:
• Consumption of the memories
• Execution speed
• On-chip vs off-chip memory placement

Clearly power consumption of memories is
proportional to their size. Equally the number of
address bits used influences the routing and bus
capacitance and therefore the drive strength
required.
The number of fetches that are required directly
influences the execution speed, the fewer memory
accesses required to read the program into the CPU
the quicker and more efficiently the program can be
executed.
One key aspect in SoC design is whether the
memories are placed on-chip or off chip. On-chip
memory tends to be more limited in size, off-chip
memory is bigger, however I/O pins must be
dedicated to accessing this memory. This can
significantly increase the cost of packaging.
There is also an impact on power consumption, I/O
buffers required to drive external pins consume
considerably more power than the internal buffers
required to access on-chip memories.

 Page 3/8

A Practical Example: FreeRTOS

FreeRTOS is an open source real time operating
system. It has the advantage of being small,
lightweight and available freely as source code.
Ports are available for a number of processor
architectures
The Core FreeRTOS kernel was compiled for the
8051 and for the Cortus APS3.

Architecture .text
8051 (SDCC) 26007 bytes
APS3 (GCC) 11084 bytes

Table 1: Code size for FreeRTOS

The same options and demo code were chosen.
A further analysis was made of the resulting
assembly code to determine the instruction length
mix.

Architecture 8 bits 16 bits 24 bits 32 bits

8051 37% 48% 15% —
APS3 — 56% — 44%

Table 2: Instruction Mix for FreeRTOS

Table 1 shows that the 32 bit APS3 architecture is
2.35 times more memory efficient compared to the
8051.
Furthermore Table 2 shows the breakdown of the
instruction lengths for the two processors, the APS3
has two lengths of instruction (16 and 32 bits), the
8051 has instructions 8, 16 and 24 bits long. It is
interesting to note that only just over a third of the
instructions of the 8 bit processor are actually 8 bits
in length.

Stack Based Architectures

In terms of code density, stack based architectures
offer a clear advantage compared to register based
machines. These architectures however are not
without their disadvantages. They require that all the
operands are present on a stack (either internal, or
in external memory) and a significant amount of
processing can be taken up with stack manipulation.

4. Performance
Many factors influence the performance of
architecture. The use of a benchmark can give a
general indication of performance.
The Dhrystone benchmark is a popular synthetic
benchmark for embedded systems. It produces a
measure of CPU performance in DMIPS/MHz. This
is a synthetic benchmark and should be treated with
caution; the only way to determine how quickly a
program will run is to actually run it. However it can

give broadly useful indications. The performance
measures for the 8051, and enhanced 8051 and the
APS3 show significant performance advantages for
the 32 bit architecture.

Architecture “Performance”
8051 0.026 DMIPS/MHz

Enhanced 8051 0.296 DMIPS/MHz
APS3 0.85 DMIPS/MHz

Table 3: Performance

The significance of the measurements shown in
Table 3 is that the 32 bit architecture manages to do
significantly more useful work per clock cycle than
the 8051 [5]. This means that more work can be
done in a given unit of time (at the same clock
frequency), or the same amount of work can be
spread over a longer period (at a lower clock
frequency).

Register Set

The register set has a significant impact upon the
ability of a compiler to generate efficient code, and
also the suitability of the processor for handling time
critical interrupts without large quantities of
overhead.
The register set can be characterised by the
following features:

• General Purpose
• Accumulator
• Width (8, 16 or 32 bits)
• Number of Registers

Figure 2: Register Specification, Add Instruction

Eight bit architectures generally have 8 bit
instructions, with one or more extension bytes as
necessary. The small instructions limit the number of
registers that can be specified and most instructions
operate upon an implicit register, an accumulator.
Processors with wider bus widths often have larger

 Page 4/8

instruction sizes, either 16 or 32 bits long. Figure 2
shows a typical instruction from the APS3 and the
8051, an add instruction, for comparison. It can be
seen that the larger instruction width permits more
bits to be used to specify the registers to operate on,
for example the APS3 uses two four bit fields to
specify which of the sixteen registers are to be used.
The ability of the ALU to operate on a wider range of
architectures reduces the requirement to move data
from memory to specific registers
An accumulator architecture reduces the size of the
instructions, as at least one of the registers is implicit
in the instruction. However this reduces flexibility.
This is very important for an 8 processor as its
instruction size is naturally a multiple of 8 bits.

Stack Based Architectures

Stack based architectures are processors for which
the majority of the operations operate upon a stack,
taking the operands from the stack and placing the
result back on the stack. In this approach the
operands and destination of all operations are
implicit, allowing a very compact coding of the
instructions. This architecture suffers from the same
disadvantage of requiring significant manipulation of
data to ensure that it is in the “right place” for the
desired operations. In addition this architecture can
result in many memory accesses, which can be
inefficient in terms of time and power.

Peripheral Access

The large address space of 32 bit architectures can
influence the design of peripheral registers. Each
peripheral register can be designed for ease of
access, rather than efficiency of address space
usage.
The abundant address space permits functionality to
be grouped into logical operational sets, rather than
mixed to ensure optimal packing.

Figure 3: Peripheral Register Comparison

The figure shows two peripheral registers, the Serial
Control (SCON) register from the 8051 and the
Receive Status register used with the ASP3. The
SCON register controls several aspects of the
UARTof the 8051, the receive status (interrupt
status) is buried amongst transmitter status bits,
control bits and data bits. Significant bit manipulation
is required to determine the status of the receiver.
The APS Receive Status register contains just the
bits concerning the receiver status, the “nothing to
report” status of the receiver is indicated by an all
zero register.
This approach simplifies driver and most particularly
interrupt handler writing. The interrupt handler can
quickly determine the exact cause of an interrupt and
react appropriately – quickly returning control to the
interrupted routines, or returning to the low power
sleep mode.
The driver software can be written more simply and
with fewer potential bugs as different functionalities
are carefully separated. There is no risk that the
receiver software will overwrite control bits of the
transmitter hardware.

 Page 5/8

5. Real Time Considerations
Embedded systems are often real-time systems too.
The key constraint of a real-time system is that it
react in time to an event, usually an external
stimulus or the expiry of a timer, and that it do this in
a predictable manner.
Interrupts are often the mechanism used to provide
this reactivity. The key aspect of an interrupt is the
ability to stop one task and execute the interrupt
code in a timely and predictable manner, and then
return to the interrupted routine, or back to sleep.
There are a number of influences on the ability of a
system to be timely and predictable.

• Register Set Size
• Instruction Latency
• Interrupt Efficiency
• Pipeline depth

Register Set Size

The size of the register set has a direct influence on
the context switch time. The process state must be
saved between context switches, this state includes
all process accessible registers.
A seemingly interesting feature of the SPARC
architecture is register windows, allowing subroutine
link simply by incrementing or decrementing a
register window pointer. This is elegant until the
(necessarily limited) register set runs out of windows,
when the register set must be copied to memory.
This scheme also has a drawback when performing
a context switch when again the entire register set
must be copied to memory.

Instruction Latency

Instruction latency influences the predictability of the
interrupts. Few architectures permit instructions to
be interrupted in the middle of execution. Therefore
interrupts must wait until an instruction completes
before being acted upon. This latency increases with
instruction complexity, increasing the uncertainty of
when the interrupt will be recognised.

Interrupt Efficiency

Interrupt efficiency can be crucial; the
implementation of the interrupt mechanism can take
several forms:

• Vectored interrupts
• Shared interrupts
• Fixed routine addresses

In a processor with vectored interrupts a table of the
addresses of the interrupt handlers is present. Each
interrupting device is assigned a vector number and
when an interrupt is signalled the processor

accesses the vector table and jumps directly to the
interrupt routine, this is largely the most efficient
method (it is how the vast majority of modern 32 bit
architectures behave).
In shared interrupts there are only one or two
interrupts and the interrupt handler must poll all of
the potentially interrupting devices to determine the
source of the interrupt. This polling is quite
inefficient.
In some processors the interrupt handlers are at
fixed addresses and when an interrupt occurs the
processor jumps to a fixed address corresponding to
the interrupt this is more efficient than the vectored
approach. However this scheme has the drawback
that if there are multiple interrupts then there must
be a fixed spacing between the handlers, and either
this spacing will be too great and (valuable) address
space will be wasted, or there will not be enough
space and jumps will have to be inserted, creating
convoluted code (that is difficult to write in anything
other than assembly language).
The 8051 uses the latter approach, the APS3 the
former approach.

Pipelines

Deep pipelines considerably improve the frequency
at which a CPU can be clocked. However they
require flushing and refilling when there is a change
of flow, for example a branch or jump – and
especially an interrupt. The delay in re-filling the
pipeline can be mitigated by prediction for branches
and jumps, however by their nature this is not
possible for interrupts. This means that there can be
considerable latency in starting to execute the
interrupt code in addition to recognising the interrupt.

6. Core Size
The size of an IP core is a major consideration in the
design of an SoC. It influences directly the
production cost, the size of die is directly
proportional to the cost of the SoC. The cost of
silicon is calculated in mm2.

Architecture Gate Count
8051 9000 [5]
APS3 9500 [6]
Cortex-M0 12000 [6]
ARM7 TDMI 36000 [6]
Cambridge Consultants
XAP5a (16 btis)

18000 [6]

Tensilica Diamond Standard
106Micro

20000 [6]

Table 4: Gate Counts for Selected Processors

 Page 6/8

Table 4 gives a summary of gate counts for a
selection of processors. It can be seen that there is
more than a factor of 4 in size between processors
targeting the same application. What should be
noticed is the similarity in size between certain 32
bits processor architectures and the 8051.

Leakage Current

The key parameter for battery life for a device that is
mainly in an idle or sleep state is the leakage
current. This is directly proportional to the silicon
area of the circuit, which is related to the gate count.
Increasingly FPGAs are becoming used not only for
system prototyping but also commercial
implementation. Clearly the cost of an FPGA is
proportional to its size; it is also a factor in the
feasibility of prototyping the system. Here the
processor core size is a key cost parameter.

7. Power Consumption
Power consumption is a primordial consideration in
battery operated devices but it also influences power
dissipation strategies. The key advances in mobile
technology are mostly due to the reductions in
energy requirements of electronic systems.
CMOS technology mainly consumes power on clock
transitions, with a static leakage current also
contributing a small part (significantly more in
technologies smaller than 130 µm).
Power consumption is therefore a function of the
number of gates that switch and the frequency at
which they switch.

Architecture Power Consumption
8051 core 34µW/MHz

APS3 24µW/MHz

Table 5: Power Consumption

(8051 figures taken from the published Dolphin
Integration estimates)
Table 5 shows the power consumed per mega Hertz
of clock frequency. These figures should be taken
into consideration with the figures in Table 3 which
shows that the 32 bit processor gives considerably
“more bang for your buck” than the 8051. The APS3
outperforms the 8051 by 46 times in terms of DMIPS
per µW.
To be clear, taking into account the
meaninglessness of benchmarks, that for the same
application in equivalent systems that the battery life
of a system with the APS3 would be 46 times that of
the 8051 implementation.
This figure is just considering the raw processing
power of the processors. Other features will also
improve the power consumption. The improved code

density, as shown in Table 1, will require fewer
opcode fetches, and the register to register
architecture will require fewer memory access, both
of these factors will reduce power consumption.
The leakage current is directly proportional to the
silicon area. Table 4 shows the gate count for
various processors, the relative leakage currents can
be inferred from these figures.

32 bit Busses

Driving bus lines requires the bus capacitance to be
charged, and discharged, therefore the more bus
activity that is required the more power that will be
consumed. Driving 32 lines will consume more
power than 8, so clearly an 8 bit CPU has an
advantage. However if constants larger than 8 bits
are required, then multiple accesses are required
and not only do the data lines need to be drive twice,
but also the address lines.

Figure 4: 8 bit bus vs 32 bit bus

In this case the 32 bit processor will require only one
access to the memory (which can also be switched
into low power mode more quickly) and therefore
consume less power globally.

Pipelines and Speculative Execution
The more sophisticated modern CPUs have deep
and complicated pipelines, which dramatically
improve the instruction throughput and optimise
silicon usage. This also increases the clock rate at
which the CPU can be run. Speculative execution is
often coupled with this to mitigate the impact of

 Page 7/8

branches and jumps. This reduces the number of
pipeline stalls and improves benchmark results.
However a considerable drawback is that operations
are performed and then the result is thrown away –
the power used to perform these unused operations
is wasted.

8. Porting
In many situations there is an established code
base. This can be in the form of libraries external to
the project or software already developed for
predecessor implementations.
External libraries may be available as high level
source code or coded in assembly. Existing source
code is too frequently implemented in poorly
documented assembly language, making re-
implementation in C a tedious proposition.
Changing the target architecture partway through a
product lifecycle may be due to a number of
considerations:

• Cost Reduction
• Replacing obsolete parts
• Adding features

In the case where porting of the code is necessary, it
is clear that porting to an architecture that offers a
superset of the features compared to the original
target processor is considerably simpler. Removing
non-standard extensions to the language is often
simple though can require knowledge of the
implications of the extension.
Given the increased performance of a 32 bit
architecture it is possible to emulate the 8051
instruction set and key parts of the architecture for
the code libraries that have not yet been
implemented for the 32 bit architecture. This can be
done through run time emulation (the simplest
approach) or through re-compilation of the 8051
assembly language. Simple strategies using jumps
tables can be remarkably effective.

Data Alignment

Moving from 8 to 32 bit architectures can cause data
alignment and packing issues. This can be
problematic when the architecture cannot perform
aligned accesses.

Figure 5: Packed Structure Alignment

Figure shows the potential packing of a structure in
memory. This packing is of no significance to 8 bit
CPUs but can influence how a compiler might
dispose the elements of a structure in memory for
optimal speed of access, or to correspond to
processor constraints. This becomes problematic
when the programmer attempts to access the
contents of the structure by bypassing the structure
access syntax and directly access memory, byte by
byte.
Some 32 bit architectures can perform unaligned
access (using a two cycle bus access), for example
the APS3.

Language Extensions

As we have already discussed certain features of
microcontrollers require extensions to the language.
It is considerably simpler moving to a more standard
dialect of the C language than adapting already
developed code to a more customised version of the
language.

Futureproofing a Design

The goal of many projects is a successful product
that is sold in significant numbers and with a long
product lifetime in the market. With this goal in mind
it is prudent to ensure that the design can not only
be manufactured in large quantities but also over an
extended time. The ability to extend the design to
produce versions with extended features can also
encourage sales, to beat customers or to provide an
“upgrade” path. The development of a system with
the ability to be extended can be a significant design
objective – one technique to ensure that future
development can be done with minimal effort is to
ensure that all software developed is portable. That
is to say: developed in a standard, “unenhanced”
language targeting a uniform architecture.

 Page 8/8

9. Sixteen bit CPUs

In this paper we have not looked at 16 bit
architectures. It might be considered that a 16 bit
CPU could be an ideal compromise between the 8
bit CPUs and the 32 bit architectures. The problem is
that 16 bit CPUs are neither fish nor fowl, that is they
generally have the disadvantages of the 8 bit CPU,
notably limited address spaces, and few of the
advantages of the 32 bit architectures.

Decidedly few 16 bit architectures have more than a
64Kbyte address space, which offers no advantage
over the 8 bit processors.

10. Conclusion
Conventional thinking favouring 8 bit microcontroller
cores requires revision in the light of the processor
IP that is now available in the market.

 8
bits

32
bits Improvement

Code Density  2.35 ×

Power Consumption  46 ×

Core Size   =

Ease of Programming 

Real Time 
Backward
Compatibility 

Familiarity  

Table 6: Conclusions

Table 6 resumes the paper and shows that a large
sector of the embedded SoC market can
advantageously move to using 32 bit processors.
The increasing use of the C language removes the
advantage of familiarity, especially since C compilers
for 8 bit processors require non-standard extensions.

11. Acknowledgement

The author acknowledges the contribution of his
colleagues to this work.

12. References
[1] Hennessy and Patterson: “Computer Architecture A

Quantitative Approach”,

[2] Intel: “MCS51 Microcontroller Family User’s
Manual” Intel, 1994

[3] http://www.softwaremetrics.com/
Articles/HardwareandSoftware.htm

[4] Denis M. Ritchie: “The Development of the C
Language”, Second History of Programming
Languages conference (Cambridge, Mass) 1993

[5] Dolphin Integration:
 “http://www.dolphin.fr/flip/logic/8bit/logic_8bit.php”

[6] Tom R. Halfhill,: “Itty-Bitty 32-Bitters”, Microprocessor
Report, 5/11/09-01

13. Glossary
CPU: Central Processing Unit

IP: Intellectual Property

RAM: Random Access Memory

SDCC: Small Device C Compiler

SoC: System on Chip

	Introduction
	Ease of Programming
	Features of C
	Impact of Architecture
	The architecture assumptions implicit in the C language have an impact upon the ease of implementation for a specific architecture.
	Pointer arithmetic
	Address Space

	Code Density
	Importance of Code Density
	A Practical Example: FreeRTOS
	Stack Based Architectures

	Performance
	Register Set
	Stack Based Architectures
	Peripheral Access

	Real Time Considerations
	Register Set Size
	Instruction Latency
	Interrupt Efficiency
	Pipelines

	Core Size
	Leakage Current

	Power Consumption
	32 bit Busses

	Porting
	Data Alignment
	Language Extensions
	Futureproofing a Design

	Sixteen bit CPUs
	In this paper we have not looked at 16 bit architectures. It might be considered that a 16 bit CPU could be an ideal compromise between the 8 bit CPUs and the 32 bit architectures. The problem is that 16 bit CPUs are neither fish nor fowl, that is the...

	Conclusion
	Acknowledgement
	References
	Glossary

